随机马尔可夫乘积矩阵的极限经验谱分布
摘要:
设 {X(k)ij,1≤i,j≤ N;1≤k≤m}是一列独立同分布的非负实随机变量,均值为1,有限方差σ2>0,M(k)) =(X(k)ij/
Ley{X(k)ij,1≤i,j≤ N;1≤k≤m} be a sequence of independent and identically distributed non-negative random variables, with mean 1, finite varianceσ2>0,M(k)) =(X(k)ij/∑Nj=1X(k)ij)NXN(1≤k≤m)is a sequence of Markov random matrices. In this paper, we prove that as N tends to infinity 1/n∑Ni=1 1δλi the empirical spectral distribution of σ-2MⅡTM ⅡMconverges weakly to the Fuss-Catalan distribution almost surely, where ⅡM = NM/2M(m)…M(2)M(1),λ1,λ2…,λN andⅡTM ⅡM are the eigenvalues of the real symmetric matrix ⅡTM ⅡM, And the simulation results obtained through numerical simulation are consistent with the theoretical conclusion.
作者:
程慧慧,宋敏杰
Cheng Huihui,Song Minjie
机构地区:
华北水利水电大学数学与统计学院
引用本文:
程慧慧,宋敏杰。随机马尔可夫乘积矩阵的极限经验谱分布[J].学报(自然科学版),2025,53(6):52-57.(Cheng Huihui, Song Minjie.Limit of empirical spectral distribution for random Markov product matrices[J].Journal of Henan Normal University(Natural Science Edition),2025,53(6):52-57.DOI:10.16366/j.cnki.1000-2367.2024.10.14.0002.)
基金:
河南省高等学校重点科研项目
关键词:
随机马尔可夫矩阵;经验谱分布;乘积矩阵;Fuss-Catalan 分布
MMarkov random matrices ; empirical spectral distribution; product matrices; Fuss-Catalan distribution
分类号:
O211


